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5| ABSTRACT \\\

A mathematical model for analysis of actual solar collectors has been
developed. This model allows one to calculate the energy flux on any arbitrarily
shaped focal surface from any arbitrarily shaped collector surface without making
numerical approximations. Provisions are included for treating random surface
errors on the reflector surface, orientation errors of any size, and vignetting of
reflected light by a cavity opening. Typical results from this model are pre-
sented to show the effects of surface and orientation errors.

This model has recently been used to investigate the interface between 3
the collector and the heat receiver—the cavity opening. The directional |
assumption ordinarily made for this interface is that this opening can be treated
as if it were a plane surface that emitted radiation according to Lambert's law ‘

(i.e., the cosine law). Results are presented that clearly show that this :
assumption is in substantial error for both perfect and imperfect collectors.

coupled with typical collectors., An "open cavity" Fredholm integral equation
approach and the valid directional distribution have been utilized. The effects
of the absorptivity and emissivity of the walls of the heat receiver have been
investigated; reradiation losses and system performance have been calculated.
The results presented differ significantly from the usual engineering estimates
used in the design of solar power systems.

Detailed analytical work has been performed on cylindrical heat receivers
*This reseaggch was supported in part by Allison Division G.M.C. and in part

by NASA GM NsG=-316 to the Institute for Direct Energy Conversion of the

Towne School of Civil and Mechanical Engineering of the University of Penn~

sylvania,

**This paper was presented at the AGARD Conference held in Cannes, France,
March 16-20, 1964,




INTRODUCTION

Fundamental to the analysis of solar reflectors is the fact that the source
(sun) is not a point source. Because of this fact the classical techniques of ray
tracing no longer apply to describe the energy distribution and its conversion.
Instead, cone tracing techniques must be used—as a cone can be used to repre-
sent the light coming from a small but finite source. The concept of cone tracing
was introduced by F. Cabannes and A, Le Phat Vinh {1)* in 1954 and by N. Hukuo
and H, Mil (2) in 1957, Cabannes and Le Phat Vinh considered only perfect
paraboloids . Hukuo and M!i also considered perfect paraboloids, but they then
attempted to apply their results to real reflectors by introduction of a "scattering
circle" concepi—-1i.e., the reflected cones are statisiically scattered in the
focal plane urniiformly over a circular region.

Hukuo and Mii wer= perhaps the first 10 apply statictics to predict real
reflector perfoimanne by !niroducing the "scauwering sircie” concept. This
concept was e:tenced to the use of a normal disiribotion inn the focal plane
(in place of tne unifurm ¢'siribution of the "scattering circle” conzept) by various
individeals lete in 1960 (3, 4) and several papers hive sliice been published on
this by cther authors (5, 6). It is impo:tant io poini out that this concept applies
a probebility distrib.ution to a scatering of polnts in the focal plane; taus, it is
not possible to relate theoretically the probapiiity distribution in the focal plane
with the surfiace contour eirors due to the manufacturing p:ocedures on the
reflector surface, 7The altemative is to apply the probab:lity distribution to the
surface normais on tne refiector. Physically, this is the most desirable and
meaningful approach; however, it is also the most difficul* to implement, Perhaps
the first persoa to try tiis type of approach was Siivern (7). His work, however,
was burdened witn several errors and numerous significani approximations. He
assumed that ~aite rotations commute (i. e., he asaumcd that thz sum of finite
rotations docz nas dzpend -n the order of the roteticns) and he applied the normal
distribution functici® {acostectly to angles, He did, however, obtain numerical
results from his work. Since this time, in addition tc the work discussed here,
there have been sevzral other attacks on this problem, Fuller (8) formulated
a mathem=tiza. app-oach *c this problem. Fis worl., however, suffe:rs from
several maio. problenis: ;) ne applied the nurmal dfsuaibuiien fupciion incorrectly
to angles. anrd (41 his woir wan never sucoesofuliv nrovrzmmed on a computer,
General Eies'ric 19 hne 2is0 cartizd ouw ana ytical woll io predict the verformance
of a reflzctolr nossessing o fixed speciiic sunace eror ¢ver the entive cudface.
No provisionz were made iC treat orientation zrrors 3ngd nc introduction of
statistics was made. Gen-=zial Electric, however, dia achiave operative computer
programs,

*Numbers in parentheses refer to references listed at the end of this paper.




Theoretical work on optical analysis problems was started by this writer
(under contract to Allison Division G.M.C.) early in 1959. Initially cone
tracing techniques were used to analyze conical serration Fresnel reflectors.
This work, however, was restricted to perfect surfaces. Upon completion
of this work (10, 11) in late 1960, work was started toward the analysis of
actual solar reflectors.

From the start, the required model of a solar collector had to be as general
as possible and had to be capable of analyzing both perfect and imperfect
(actual) reflectors. Because of the necessary complexity of such a general
model, from the very first the goals of this work were twofold:

i . Development of a mathematical model

tt. Development of an operative computer program from this mathematical
model .

The many problems encountered can be appreciated by reference to taz intsrim
report (12), written in June, 1961. Cver a period of time the desired mathematical
model for actual solar collectors (13, 14, 15) was successfully developed.
This model included provisions for treating random surface errors on the
reflector surface and orientation errors of any size. Furthermore, almost

all the approximations introduced by others into cone optics were removed.
The approach to the development of the mathematical model was judiciously
selected to result in a practical and useful tool for the design and evaluation
of solar-thermal energy conversion systems. The operative computer program
(D70E) for evaluating solar reflectors that was developed from these equations
is practical and feasible from a computational (and computer running time)
viewpoint.

Although the mathematical model is applicable to any cenceivable reflector,
the computer program {D70E) was designed to treat only paraboloidal reflectors,
conical Fresnel serrations, spherical Fresnel sertations and/or any part of
these reflectors. This initial work, however, was restricted to the
determination of the magnitude of the energy distribution on any plane surface
perpendicular to the optical axis.

In early 1363, a copy of this D70E program was purchased by Aerospace Cortp.
(under contract No. 62-167) to be used as part of a complete solar-thermal
energy conversion system computer program under development there. As
already pointed out, the only restriction in this work to date was that it
applied only to plane focal surfaces, Although the use of plane focal surfaces
is convenient for a general study of solar reflectors, the results obtained are
not in a convenient form for use in connection with the analysis of a solar-
thermal energy absorber, such as a cavity. Infact, the use of




such results requires that critical assumptions be made conceming the direc-
tional distribution of the energy flu:x in the focal plane. Because of this,
Aerospace found it highly desirable to extend the previous analytical work

to be able to caiculate the energy flux distribution on any arbitrarily shaped
focal surface {e.g., a cavity wall). V. ith this extended capability, the
mathematical model would then not only check the directional assumptions
used, but would also obvicte the need for making any directional assump-
tions. The perfection of such a generalized mathematical model would
provide the solar power system designer with mathematical tools that were
heretofore unavailable.

This extended mathematical model was developed and perfected at
Allison under contract AF - 04(695)~335. As a result of this extended work,
all the arproximations introduced into cone optics have been removed; it
is now possible to calculate the energy flux distribution on any arbitrarily
shaped focal surface from any arbitrarily shaped reflector surface. This
model includes provisions for treating random surface errors on the reflector
surface, orientation errors of any size, and vignetting* of reflected radia-
tion by a cavity opening. N9 aporoximations are introduced; the model is
accurate within the limitations of the numerical techniques of integration on
high speed digital computers. An operative computer program {374 B) for
evaluating solar reflectors has been developed from this theoretical work;
this program is practical and feasible from a computational { and computer
running time) viewpoint (15).

*The term vignetting refers specifically to blockage of reflected light by a
cavity opening. This is in contrast to the term blockage, which is used to
refer specifically to blockage of incident light on the reflector. In addition
to vignetting, provisions also exist for treating blockage of incident light.




SOLAR REFLECTOR MODEL#*

The broad scope and generzlity of this methematiczl model of a solar
reflector can readily be seen fzom the following outlire of the input parameters:

Mathematical Solar Simuletor

Source Parameters
Solar half angle
Source type
Uniform
Limb darkening
Reflector Parameters
Arbitrarily shaped reflector surface** jncluding blockage effects
Surface Parameters
Perfect reflector surface
Imperfect reflector surface (errors of all sizes)
One-dimensional normal distribution applied to the surface
normals
Two-dimensional normal distribution applied to the surface
normals
Orientation Parameters
Orientation errors of all sizes
Vignetting Parameters
Circular hole vignetting
Arbitrary position, size, and orientation of opening
Focal Surface Parameters
Arbitrarily shaped focal surface

A detailed description of this mathematical model of a solar reflector
is beyond the scope of this paper. A complete description of this model and
its accompanying computer programs is given in reference 15.

The power of this mathematical solar simulator can best be seen by
examination of some typical results. For the purpose of this paper, let us
consider only paraboloidal reflectors, as illustrated in Figure 1. We shall
always choose R = 1.0 for the sake of normalization.

*The terms reflector and collector are used interchangeably throughout this
paper; likewise, the terms heat receiver and cavity.

**Although the theory applies to any arbitrarily shaped reflector surface, the
computer programs are presently designed to treat paraboloidal reflectors,
conical Fresnel serrations, spherical Fresnel serrations and/or any part of
these reflectors. (The energy flux distribution from a Fresnel reflector is the
sum of the energy flux distributions of the individual serrations.)
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Let us first consider only plane focal surfaces, perpendicular to the
principal axis of the reflector and intersecting the principal axis at the point

source focus. Let the source be a uniform disk subtending a half angle of
= ,00465. Let

°x = circumferential standard deviation of the surface normal
ay = radial standard deviation of the surface normal

I = concentration ratio of reflected light. Multiplication of I by the
solar constant and the coefficient of reflection results in the actual
energy flux/unit area incident on the focal surface point.

B8 = polar orientation angle between the central ray from the sun and the
principal axis of the reflector

= power collected in area nrz / total power reflected from

n
collection the reflector*

Figure 2 shows results as a function of rim angle for 0. = oy =0,8~=

Figure 3 shows results for a 60 paraboloidal reflector as a function of 8
for o= oy 0. Figures 4, 5, 6, 7 show results for a 60° paraboloidal

reflector as a function of surface errors for 8 = 0. These results are
presented here as typical examples of the use of this mathematical solar

simulator for plane focal surfaces, ‘These results are self explanatory and will
hot be discussed further, -

Plane focal surface results have been used in the past as a means of
comparing various reflectors and optimizing reflector designs. The validity
of this approach, however, is now dubious. This approach was based on the
premise that the prediction of the performance of the heat receiver could
effectively be isolated from the reflector. More specifically, it was usually
assumed that reradiation losses from the heat receiver could be calculated
as if the cavity opening were a simple gray body. The reflector design was
then optimized on the basis of this simple prediction of reradiation losses.

Recently, detailed calculations of heat receiver performance have shown
that the assumption that the cavity opening can be considered as if it were a
simple gray body is incorrect. In fact, the reradiation losses are usually
much greater, as will be seen later on in this paper (Figures 15, 16). Thus,
the optimization of the reflector design can no longer be considered independent
of the cavity; instead, they must be optimized as a system. Detailed cal~
culations of the heat receiver performance are essential.

*Total power reflected from the reflector = (coefficient of reflection)x(total

power incident on the reflector); r denotes the focal plane radius « 8s shown
in Figure 1,
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{EFLECTOKR~-CAVITY INTERFACE

Now, in the detailed »rediction of cavity nerformance another question
arises that makes the usefulness of plane focal suriace results even more dubious.
In order to calculate the seriormance of the cavity, it is nccessary to know the
energy flux distribution on the walls of the cavity. Before tae development of tais
eutended mathematical model (1v), it was not possible to calculate this energy
flux distribution directly. Instead, it was necessary to take plane focal suriace
results and malke & crucial assumption about tne directional distribution of the
radiation entering the cavity. The directional assumbtion ordinarily made (16, 17)
is that the cavity opening ca.t be trea*ed as 17 it were a nlane swilaze that emiited
radiation according to Lambert's Law (i.e., the cosine iaw). Thus, the predicted
energy flu: on plane focal suriaces was used— via Lambert's Law— to calculate
the solar energy ilux incident on tue walls of the cavity. Jlearly this type of
aoproacn still tends to isolate the study and design of tne cavity from that of the
reilector, although to a lessczr degree than the simple gray cavity approach.*

vvith the recent >eriection of the generalized mathematical model (described
in reierence 15j, it is now L)ossiule for the first tim2 to investigate this assumption.
This question can be investigated in two ways. First, thne actual directional dis-~
tribution can be calculated. This is best done by looking at a hemispherical
cavity with a small opening located on the principal axis of the reflector. Second,
the actual energy iluix incideat a the walls of tyoical cavities can be calculated
and compared with similar results obtained through tie use of Lambent's Law. This
tells how important ainy deviations irom Lambert's Law will be for any proposed
cavity configuration. rFigure 3 shows a sketch of tite hemispherical cavity used to
detemine tne directioinal distribution and the cyliadrical cavity used to examine the
importance of deviations irom Lambeit's Law Ior a typical cavity.

For a oerfect reflector (g" = g = Q) Figure ¢ shows a plot of I versus cos v
for the hemisoherical cavit, o: P‘igurg 3. Figure 9 also shows a polar plot of these
results tiet clearly shows ti:e directional distribution. Figure 1l shows a plot of I
along tne walls of the cylindrical cavity for -/d =1, 2, 3. The opening of this
cavity was armitrarily ciiosen so that tiie cavity collected $0% of tne reflected
energy. Lambert's Lavs has also been plotted in these figures for tne purpose of
comnarison.

. . vy s . Cov . o .
The same results have been obtained for a ty»icai imoeriect 60 paraboloidal
reflector with g = 5', gy = 13'. Figure 10 sliows a plot of I versus cos ¢ for the

same hemisoierical cavity and a polar olot of these results to show the directional
distribution. Frigure 12 saows a ylot of I along the walls of the cylindrical cavity
for;/d=1, 2, 3. Here, also, the cavity onening was arbitrarily chosen so that
the cavity collected 0% of the retiected energy. Lambert's Law has alsc been
plotted in these figures inr the surrose of comparison

* Another assum>tion occasionally maade is that tilte energy ilux distribution on a
spnerical surface is uniform (i9). .esults shown in Figures $ and 10 readily
show that this assumption is in substantial error.




The results shown in Figure 12 contain some interesting "fine structure"
effects —specifically the peaking of I on the back wall of the cylinder as
x— 0 (i.e., as we approach tiae principal axis of the reflector). Figure
11, however, shows that this peaking is not precent in perfect reflectors.
A detailed study of this effect has shown that this peaking is purely a
statistical effect. Figure 13 shows a histogram of the number of reflector
areas versus probability forz= .06, x= .0l2 and for z= .06, x= 0.

This histogram sinows tha: as x- 0, the numter cf reflector areas that have
large probabilitiec assozizied with them incrceses, thus causing I to peak.
This same stztistical effect also explains the fine stiructure of the angular

distribution ia Figure 10,

These results clearly indicate that Lambert's law isin substantial error for
both perfect and imperfect reflectors.* It must be pointed out that tae
results presented bk=2re cdo ot take into account blockage of the incident light
by the phys:ical structure of the heat receiver; they assume a full paraboloidal
reflector with no blockage. The inclusion of such blockege is expected to
lead to furtiier deviations from Lambert's law.

The . grcss envors of the Lambertian assumption means that plane focal
surface resulis cannot be used to calculate cavity performmance. The reflector
cannot be isolated and independently optimized from the heat receiver;
instead, both the reflector and the cavity must be studied as components of
a proposed solar power system with the system being optimized from a
systems viewpoint. In fact, it can be shown that the use of plane focal
surface results in the prediction and optimization of solar power systems
is completely redundant. To see this, let us consider a system consisting of
a solar reflector and a heat receiver. Define

n = power out of the heat receiver/total power incident on the
system
reflector
ncavity = power out of the heat receiver/total power into heat
receiver
2
= 1
T collection power collected in area r~ /total power reflected by
the reflector
T = coeffizient of reflection of the reflector surface
Then
nsystem =T ncavity Ncollection

In order to optimize this system we must maximize 'ncys‘_em.

*It is interesting to note tliat the cylindrical cavity resulis shcwn in Figures
11 and 12 indicate that the design of a solar power system on the basis of
Lambert's law could lead to significant problems and/or failures. The shift
in position and magnitude of the peak of I along the wall of the cylindrical
cavity simpiy cennot be ignored.
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Now, it is clear thatn is easily obtained from plane focal surface

collection

results—independent of any internal cavity design. The determination of7 cavity’

however, presents problems. The assumption that the cavity opening behaves as

if it were a gray body would serve to determinem cavity as a function only of the

cavity opening— independent of the internal cavity design. Thus, the reflector
design could be optimized independent of the internal cavity design. As we
pointed out earlier, however, this assumption is incorrect, as will be seen later

on in this paper; thusn cavity must depend on the internal cavity design.

Furthermore, we have also shown that the use cf plane focal surface results
via Lambert's law to predizt the incident energy flu:: on the cavity wall is

incorrect. In other words we have shown thatn cavipy C2RNOL be determined

from plane fccal surface results; instead the correct energy flux incident on the
cavity walls muast b= used. 7Thus. the only possibie use :«ft for plane focal

surface results w2uid be ¢c=emaine ncollect‘u“' Ye.s, kowever, is superfluous

as once the crergy fivx facident on the walls of the cavit’ is krnown, itis a

simple natter o integrate and calculate | . e
collecticn

In generzl, the calcuiation of nc is a comrlicated problem. It depends

avity
upon the cavity gexazstry, cavity opening, intarna’ -~2ll tempereture distribution
(as determinzd by ke intz-face with the heat :vchaingar =1ud/or thermal energy
storage material}, distribui’on of incident erergy fiux from the reflector, and

the material p.cperties of il.e cavity walls. Siace the nrediction of T ,
cavity

depends upon cefiector design and since 7 is easily obtained from the

‘collection
incident energy fiux on the cavity wall without using plans focal surface results,

it readily becomes apparzn¢ that in order to optimizen systam® we must study
. . Thf:' Ca 10\1]"'101‘ :)‘C . . RPN N N
T cavity aleuls 1 collection 1S @ by-product of the calculation of

n cavity® Thur, tne guesi ca of the design of an »nvimum reflector cannot be
answered inaevencant of th2 cavity through the vse <of plane focal surface results
andn .~ Inscead, ‘he srstem must e optiliizec from a systems viewpoint

collaciion
with emphzz

. § . e < ) [ S
¢ being vlaced o ihe detayniineticn of )

P
R
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CAVITY ANALYSIS

Let us now consider the calculation of the performance of cylindrical
heat receivers. The approach to be utilized can best be described as an
"open cavity" Fredholm integral equation approach. Because of the
availability of the generalized reflector model, no specific directional
distribution for the incicdent radiation will be utilizzd in this approach;
instead, the actual energy flux incident on the will of the cavity will
be used.

Consiczar the sketch shown in Figure 14. DeZine

X = a coordinate specifying a point on the cylindrical cavity
f(x) = incidzat energy flux on the wal!l of the cavity

T(x) = assumed temperature distribution of the wall of the cavity
o = Stefan-Boltzmann constant

€ = emissivity cf the cavity wall

a = absciptivity of the cavity wall

Ki{x,x') = kerrel of the integral equation. This is a geometrical factor
that describes the cavity geometry. It is an infinitesimal
area view factor.

v(x) = total energy flux reflected and emitted from the point x of the
cavity

Assuming that the walls of the cavity are diffuse*, one obtains

- 4 . - r N : ] N ] []
i) = eoT (x) + (-a)l flx) -wjalligx,x)\(x )dx ] .

of the
cavity

*It is important to emphasize that the material walls of the cavity are assumed
to emit and reflect radiation diffusely. Specular reflection has been

neglected because the pracise techniques of analysis hevo never been worked
out. Crude techniques of analvsis do exist (L9} noveier, accwate toennicu.s
that take iiic accourt the finite size of the solar scurce Jdo not presenily
exist.
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Here the integral extends over only the material walls of the cavity—hence,
the designation "open cavity" approach. The calculation of the kernel

K(x,x') for the cylindrical geometry is straightforward and will not be

discussed here. The numerical solution of this Fredholm integral equation

is carried out by using the well known Liouville-Neumann series. A temperature
distribution T(x) is assumed and this equation is then solved for v(x). ~When
v(x) is known, the performance of the cavity can then be calculated.

Some initial results have been obtained for a 60° paraboloidal
reflector (R = 1.0) coupled to a cylindrical cavity with R_ = .03 and £/d = 2.

The cavity opening was arbitrarily chosen so that Neollection .90.
Define
A = area of cavity opening
QR = total energy reradiated out of the cavity opening
n = efficiency of the cavity = total energy conducted through

cavity the walls of the cavity/total energy entering the cavity.
Figure 15 shows the results obtained for this cavity when it is assumed to
be isothermal at 1000°K, 14009K, 1800°K for an imperfect 60° paraboloidal
reflector with cx = §', oy = 10'. Figure 16 shows the same results obtained

for an isothermal 1400°K cavity with a perfect (crx =0, = 0) 60° paraboloidal

reflector. In both cases the correct energy flux incident on the cavity walls
was used (as given in Figures 12 and 1, respectively).

These results differ significantly from the usual engineering approach
used in the design of solar power systems—namely that the cavity opening
can be treated as if it were a gray body (QR / AocT4<1)*. Those who use

this gray cavity approach argue that if the cavity opening were small, the
cavity opening would behave like a black body. Hence, as the opening

is made larger, the cavity opening ought to behave like a gray body. They
have, however, neglected the important fact that this cavity is fundamentally
different as it is driven by energy entering through the opening instead of
thivu-h the walls. The results presentad here offer perhaps the first

Specifically, in the design of solar power systems it is usually assumed that the
cavity losses can be separated into losses due to multiple reflections (these are
often neglected) and losses due to reradiation effects from a gray cavity
(calculated as if the cavity opening were a gray body). Losses from multiple
reflections, if included, are treated as corrections to gray cavity resultss From
the basic integral equation it is clear that this decomposition into reflected and
reradiated losses has no meaning—only the total has a physical meaning. Hence,
it is meaningless to treat multiple diffuse reflection losses as a correction to
gray cavity reradiation losses,
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realistic estimates of cavity performance for a cavity coupled to a solar
reflector. They clearly show the importance of the absorptivity of the
material surface of the cavity walls and point out that a gray cavity assump-
tion is erroneous.

The results and experience that have been obtained clearly show that
the cavity is a major design problem; a very detailed cavity analysis must
always be made in order to estimate cavity performance accurately.* Further-
more, since the incident flux distribution on the caviiy wall is a function of
the actual reflector used and since the cavity wall temperature distribution
is a function of whatever coanects to the cavity walls {thermal energy storage
material, heat exchanger, etc.), the cavity cannot be studied and optimized
independently. Instead, a systems approach must be utilized.

The importance of and need for performing extensive detailed systems
studies of solar-themal energy conversion systems cannot be overempha-
sized. Efforts to da*e havz oaly begun to "scratch the surface"— thermal
energy storage materials must be included, various cavity geometries must
be studied, other tyres of heat exchangers and direct conversion devices
must be used, etc.

* It is important to point out here the work of Al Lowi and associates at
Aerospace Cormp. (16, 17,18). They are performing the most extensive and
realistic solar-themal energy space power systems study to date. Their
system presently consists of a solar reflector, cylindrical cavity, and a
gaseous heat exchanger. They are using the optical analysis techniques
previously discussed to calculate the energy flux on the walls of the cavity.
Their cavity analysis technique is basically similar to that described in this
paper, except they use a finite difference approach to the problem (15). Thus,
they use finite area view factors and invert a matrix to solve the cavity
problem. In addition, they also take into account spectral properties of the
cavity walls by using spect:al decompositions of the radiation. For the heat
exchanger analysis they use a thermal analyzer network solution {17). In
order to solve for the cavity wall temperature distribution they perform an
iteration between the cavity and heat exchanger routites. Their results
(restricted to isothermal wail.t) egree with those we obtain Hv solving the
Fredholm integral eguation.

12




CONCLUSIONS

A mathematical model for analysis of actual solar collectors has been
developed. This solar collector model is truly a mathematical solar
simulator; thus it is a necessary and indispensable tool in any realistic
systems study involving a solar collector. Because of the broad scope and
generality of this model, its perfection now provides the solar-thermal
energy space power system designer with tools that have been heretofore
unavailable.

This mathematical solar simulator was used to investigate the interface
between the collector and the heat receiver—the cavity opening. The
assumption of Lambert’'s law to describe the directional characteristics of
this interface was shown to be .in.substantial error.

In the design of a solar-thermal energy space power system, the total
system efficiency-—not the individual component efficiencies —must be
optimized. In the calculation of system efficiency, it was shown that the
calculation of cavity efficiency is more basic than the calculation of
collection efficiency as the latter is a by-product of the calculation of the
former.

An "open cavity" Fredholm integral equation approach and the
valid directional distribution were utilized to calculate the performance
of some typical isothermal cylindrical cavities. The results presented
clearly show that the usual engineering "gray cavity opening" approach
is incorrect. The design of cavities for use with solar reflectors is still
a very difficult problem area with much work remaining to be done.

Proper use of existing analytical capabilities for the accurate

mathematical simulation of solar-thermal energy space power systems can
greatly expidite the development of solar power systems.
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Figure 1.
Figure 2.
Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

FIGURE CAPTIONS
Definition of terms for a typical paraboloidal solar collector.
Rim angle effects for a paraboloidal reflector with O =0y" 0,8 =0.
Orientation effects for a 60° paraboloidal reflector with

Surface error effects for a 60° paraboloidal reflector with 0.~ 0,
o #0,8=0. '

Surface error effects for a 60° paraboloidal reflector with o 7¢'= o,
c =0,8=
Y

Surface erior effects for a 60 paraboloidal reflector with o = oy #0,
B =0,

Surface error effects for a 60° paraboloidal reflector with o, = 5',
cy—lO‘ B-—Oando =10', Y— B =0.

Definition of terms for the cavity configurations studied.

Directional distribution as determined from the hemispherical cavity
of Figure 8 for a 60 paraboloidal reflector with o= GY =0,

Directional distrib%tion as determined from the hemispherical cavity
of Figure 8 for a 60 paraboloidal reflector with o= 5, oy = 10'.

Inci%ent energy flux on the walls of a typical cylindrical cavity for
a 60 paraonoloidal reflector with 0.~ oy = 0.

Incident energy flux on the walls of a typical cylindrical cavity for
a 60° paraboloidal reflector with 0, = s', oy = 10'.

Histogram to explain the peaking of I on the back wall of the cylinder
as x~ 0 in Figure 12.

Definition of terms used in the cavity analysis.

Cylindrical isothermal cavity performance. 60° paraboloidal reflector
withox= 5', cy= 10', B3 = 0.

Cylindrical isothermal cavity performance. 60° paraboloidal reflector
withox=oy= 0,8=0.
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